منابع مشابه
When is the ring of real measurable functions a hereditary ring?
Let $M(X, mathcal{A}, mu)$ be the ring of real-valued measurable functions on a measure space $(X, mathcal{A}, mu)$. In this paper, we characterize the maximal ideals in the rings of real measurable functions and as a consequence, we determine when $M(X, mathcal{A}, mu)$ is a hereditary ring.
متن کاملThe annihilator-inclusion Ideal graph of a commutative ring
Let R be a commutative ring with non-zero identity. The annihilator-inclusion ideal graph of R , denoted by ξR, is a graph whose vertex set is the of allnon-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacentif and only if either Ann(I) ⊆ J or Ann(J) ⊆ I. In this paper, we investigate the basicproperties of the graph ξR. In particular, we showthat ξR is a connected grap...
متن کاملON FUZZY IDEALS OF A RING
The concepts of L-fuzzy ideal generated by a L-fuzzy subset, L-fuzzy prime and completely prime ideal where L is a complete lattice are considered and some results are proved
متن کاملThe ring of real-continuous functions on a topoframe
A topoframe, denoted by $L_{ tau}$, is a pair $(L, tau)$ consisting of a frame $L$ and a subframe $ tau $ all of whose elements are complementary elements in $L$. In this paper, we define and study the notions of a $tau $-real-continuous function on a frame $L$ and the set of real continuous functions $mathcal{R}L_tau $ as an $f$-ring. We show that $mathcal{R}L_{ tau}$ is actually a generali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mémoires de la Société mathématique de France
سال: 1976
ISSN: 0249-633X,2275-3230
DOI: 10.24033/msmf.199